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The evolution model with parallel mutation-selection scheme is solved for the case when selection is
accompanied by base substitutions, insertions, and deletions. The fitness is assumed to be either a single-peak
function �i.e., having one finite discontinuity� or a smooth function of the Hamming distance from the reference
sequence. The mean fitness is calculated exactly in large-genome limit. In the case of insertions and deletions
the evolution characteristics depend on the choice of reference sequence.
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I. INTRODUCTION

The existence of insertions and deletions �indels� is well
established experimentally �1�. There has been considerable
interest recently in molecular evolution eigenmodels, i.e., in
the connected mutation-selection scheme �2,3�, and in the
parallel, i.e., “decoupled” mutation schemes �4–8�. The stud-
ies included mean fitness for different fitness landscapes
�5–8� and population distributions under mutation-selection
balance constraint �9�. In Refs. �10,11� has been investigated
sexual evolution models with unequal recombination as a
mechanism for generating indels. There have been several
studies of molecular evolution models that incorporate base
substitutions, insertions, and deletions �11–14�. In this article
we integrate a concept of indels with parallel mutation-
selection processes to solve our asexual evolution model
with general fitness landscape and derive an exact formula
for the mean fitness.

In biology research the term indel stands for either inser-
tion alone or deletion alone or both these processes present
simultaneously. Indels play an important role in phylogenic
analysis in practical population genetics �15�, where incor-
rect handling of indels may give unrealistic outcomes.

In the parallel mutation-selection model any genotype
configuration i is specified as a sequence of N two-valued
letters �alleles� sn= �1, 1�n�N. We denote such configu-
ration i by Si��s1

i , . . . ,sN
i �. The probability pi that configu-

ration Si occurs in genome, 1� i�2N, satisfies

dpi

dt
= pi�ri − �

j=1

2N

rjpj� + �
j=1

2N

�ijpj , �1�

where ri is the fitness, and �ij is the mutation rate from Si to
Sj per unit time. For the Crow-Kimura model �4�: �ij =−aN
if the Hamming distance dij is zero, �ij =a if dij =1, and
�ij =0 if dij �1, where dij = �N−�nsn

i sn
j � /2.

In the models studied here we consider the following
three independent parallel processes in the genome: base
substitutions, deletions, and insertions. Assuming constant
genome-variation rates per site, we denote a /N0, b /N0, and

c /N0 the rates of mutation, insertion, and deletion, respec-
tively, where N0�1 is the scale length of the genome. Unlike
in the well-studied cases of the parallel mutation-selection
scheme and the eigenmodel, now the genome length can be
varied. In this paper we focus only on the symmetric fitness
landscape, i.e., when the fitness of the genome is a function
of Hamming distance from a reference genome sequence.
The fitness is assumed to be either a single-peak function
�i.e., having one finite discontinuity� or a smooth function of
the Hamming distance.

In the first model, analyzed in Sec. II, we are investigating
indels acting in a toy problem when the reference sequence is
ordered, i.e., when it contains only one letter �either +1 or
−1� at all positions. Obtaining the solution to this toy prob-
lem is by no means trivial because neither the maximum
principle �6� nor the Hamilton-Jacobi method �9� can be ap-
plied directly. A more realistic case is analyzed in Sec. III for
a random reference sequence when the letters +1 and −1 are
randomly distributed along the genome length. For symmet-
ric fitness in parallel mutation-selection models without in-
dels the choice of the reference sequence does not affect the
solution, which is a consequence of the existing symmetry of
the governing equations. The introduction of indels to the
model breaks this symmetry and the effect of indels acting
on sequence space is to change the solution. This change
depends on the choice of the reference sequence. If we
choose as the reference sequence the one with all � alleles,
the result of deletion is the same for all the N possible posi-
tion of deleted allele. In case a random reference sequence
we have different results �sequences� after different positions
of deleted allele. In our model, an individual indel event
means either insertion or deletion of a single letter in the
genome sequence, one at a time, but there may be many
indel events during evolution. In this article we focus on
investigating a “successful selection” phase, i.e., the phase
�range of parameters� with the majority of populations being
localized around the reference sequence. Our results are dis-
cussed in Sec. IV.

II. ORDERED REFERENCE SEQUENCE

We choose the reference sequence that has all the alleles
+1 and the initial distribution of sequences that is symmetric*saakian@yerphi.am
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under permutations. An individual configuration is denoted
by �N ,L�, where N is genome length and L is the number of
�+1� alleles in the configuration. The fitness is N0r�N ,L�.
Considering only one-letter deletion or insertion at a time
there may be three processes that start at �N� ,L�� and end at
�N ,L�.

Simple base substitutions at the rate of a /N0. At the be-
ginning there are L configurations �N ,L−1� and N−L con-
figurations with �N ,L+1�.

Deletions at the rate of b /N0. At the beginning there are
N+1 configurations �N+1,L+1� and N+1 configurations
with �N+1,L�.

Insertion at the rate of c /N0. At the beginning there are L
configurations �N−1,L−1� and �N−L� configurations
�N−1,L�.

During base substitutions the letters �alleles� change their
signs. During deletion one of the letters disappears. During
insertion a new letter �either +1 or −1� is added randomly at
any of the �N+1� positions along the chain.

There are two interests in solving this model, usually
treated separately. One interest concerns genome growth
�10–12�. The other interest is the study of successive selec-
tion phase, which we present here for the case when selec-
tions and base substitutions are accompanied by deletions
and insertions.

The occurrence probability p�N ,L� denotes a fractional
number of configurations �N ,L� in the population. For sym-
metric fitness landscape and permutation-symmetric initial
distribution, probabilities p�N ,L� satisfy the equations �16�

dp�N,L�
dt

= p�N,L��N0r�N,L� −
N

N0
�a + b� − c

N + 1

N0
�

+ a� L

N0
p�N,L − 1� + p�N,L + 1�

N − L

N0
�

+ b�p�N + 1,L + 1� + p�N + 1,L��
N + 1

N0

+
c

2
�p�N − 1,L − 1�

L

N0
+ p�N − 1,L�

N − L

N0
�

− p�N,L� �
N�,L�

r�N�,L��p�N�,L���N�

L�
� . �2�

In the case of symmetric fitness landscape, for finding
steady-state mean fitness it is sufficient to consider only sym-
metric evolution. We solved Eq. �2� numerically, varying ge-
nome length between N1 and N2 subject to N2−N1�1. The
numerical results for two values of genome length are pre-
sented in Fig. 1.

Equation �2� is slightly modified near the border values of
N, as at N2 there are only deletions and at N1 only insertions.
The weighted sum over all equations is zero, where the
weights � N

L � are numbers of configurations with the same N
and L.

For single-peak fitness landscape we set all fitness values
to zero but one:

r�N0,N0� = J, r = 0 otherwise �3�

and N0=
N1+N2

2 . In the continuous-time model, considered in
this work, fitness landscape �3� can be rescaled by an addi-
tive constant, which is a standard procedure in statistical
physics. In discrete-time models all fitness values would
have to be positive. For base substitutions acting alone with-
out indels, with the choice given by Eq. �3� the system of
equations �2� decouples, which leads to a single equation for
only one master-type �reference sequence� probability �6�
from which other probabilities are obtained recursively.
When base substitutions and indels are simultaneously act-
ing, for the single-peak fitness defined by Eq. �3� the system
�2� does not decouple but, nonetheless, can be reduced to a
tractable problem that can be treated analytically. The reduc-
tion procedure is outlined in the next paragraphs.

We consider the following scaling of Eq. �2�:

p�N,N� 	 1,

p�N,L� 	 1/N0
N−L. �4�

Since the scaling �4� suppresses contributions from all terms
�N ,L� for L�N as 1 /N, after the scaling we obtain a com-
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FIG. 1. Mean fitness R vs fitness parameter J for a=b=1 and
c=2. Theoretical results are plotted as continuous lines. Numerical
results are represented by symbols. Error bars give percent differ-
ence between numerical and theoretical results. �a� Single-peak
mean fitness for N=1000. Error bars are about 0.05%, smaller than
symbol size. �b� Quadratic fitness, r=Jm2, for N=200. Error bars
are about 0.5%.
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plete set of equations for the class p�N ,N�, N1�N�N2 of
frequencies. For example, for p�N ,N−1� we derive from Eq.
�2�

p�N,N − 1� =
a

N0
p�N,N� +

c

2N0
p�N − 1,N − 1� , �5�

which is easily verified to be consistent with the scaling an-
satz �4�.

Denoting by P� a collection of all p�N ,N�, where
Pl= p�N1−1+ l ,N1−1+ l�, we write Eq. �2� for p�N ,N� as

dP�

dt
= ÂP� − RP� ,

where R is the mean fitness, R=Jp�N0 ,N0�, and the elements

of matrix Â are

All = − �a + b + c� + J�l,l0
,

Al,l+1 = b ,

Al,l−1 = c/2, �6�

where l0=N0−N1+1 and �l,l0
is Kronecker’s symbol. In a

successful selection phase the majority of population is dis-
tributed around the configuration �N0 ,N0�. The details of ma-

trix Â near the borders at l=1, l=M +1, and M �N2−N1 are
irrelevant for the computation of the mean fitness in the
successful-selection phase in the sense that the mean fitness
is insensitive to variations in these border values. The mean
fitness R is obtained in the standard way as the largest eigen-

value of Â by solving the secular equation

det�Â − 	Î� = 0, �7�

where Î is the identity matrix, and R=max�	�.
To calculate R within the 1 /N0-accuracy we utilize the

properties of determinant and in Eq. �7�, modify the matrix
A, taking A1,M+1=b and AM+1,1=c /2. Then, we define an

auxiliary function g�J� by g�J��det�Â−RÎ�. Since g�J� is
linear we write

g�J� = g�0� + Jg��0� ,

where g�0�=det�B̂−RÎ�, the matrix B̂ is the value of the ma-

trix Â computed at J=0, and g��0� is the first derivative of

g�J� computed at J=0. Because matrix B̂ is symmetric and
cyclic it is relatively straightforward to write g�0� and g��0�
explicitly:

g�0� = 

l=0

M �bei2
l/M +
c

2
e−i2
l/M − �a + b + c� − R� ,

g��0�
g�0�

=
1

M
�
l=0

M
1

bei2
l/M +
c

2
e−i2
l/M − �a + b + c� − R

. �8�

In the thermodynamic limit of large N0, N1, and N2, the in-
finite summation on the right-hand side of Eq. �8� becomes a

contour integral in complex plane. The left-hand side of Eq.
�8� is g��0� /g�0�= �g�J� /g�0�−1� /J and g�J�=0 because of
Eq. �7�. Thus, making the substitution z=exp�i2
l /M�, Eq.
�8� gives the relation between the mean fitness R and the
fitness J of the peak configuration

1 = −
J

2
i
� dz

z

1

bz +
c

2z
− �a + b + c� − R

=
J

��R + a + b + c�2 − 2bc
. �9�

Inverting Eq. �9� gives the mean fitness R and fractional
population Pm of the peak configuration

R = �J2 + 2bc − �a + b + c� ,

Pm � p�N0,N0� =
�J2 + 2bc − �a + b + c�

J
�10�

and the error-threshold condition

J � ��a + b + c�2 − 2bc . �11�

The results of Eqs. �3� and �10� are illustrated in Fig. 1�a�.

A. Nonzero fitness at one N value and many L values

The sharp-peak fitness defined by Eq. �3� is an oversim-
plification as it is believed that realistic fitness landscapes are
highly complicated and irregular. As a step towards generali-
zation we now consider fitness that is nonzero at only one N
value, set to N=N0, and at many values of L. Here, L is the
number of the �+1�-alleles in the genome and Hamming dis-
tance to the reference configuration is N−L. For this more
general fitness we take

r�N,L� = �N,N0
f�2L/N0 − 1� , �12�

where f�¯� is a smooth function. Following a method intro-
duced by Baake and Wagner �6� we transform Eq. �1� to a
more convenient form with the use of the substitution

y�N,L� = p�N,L�� N!

L!�N − L�!
. �13�

Equations for the weighted fractional populations y�N ,L�
simplify in the large-genome limit. For the computation of
the mean fitness they are easier to handle than the original
Eq. �1�. We have checked rigorously by calculating the dis-
tribution y�N ,L� that it is a smooth function of L /N0 for the
given N=N0, although it is not smooth for all N. Assuming
that y�N ,L� is a smooth function of �2L /N−1� near N=N0
and near the location L0�N0� of its maximum, we replace
y�N ,L� with y�N ,L0�N0�� in the coupled system of equations
for y�N ,L� that was obtained from Eq. �1� after applying
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transformation �13�. As described for single-peak fitness, this
gives a partial decoupling. For the decoupled part we have
the eigenvalue problem

Ây� = 	y� ,

where yl=y�N ,L0�N0��, l=N−N1+1, and R=max�	�. Again,

the matrix Â is tridiagonal. In the limit of large N the eigen-

problem for Â gives

	yl = yl��l,l0
f�m� − �a + b + c� + a�1 − m2�

+ �yl+1b + yl−1
c

2
��1 + m + �1 − m

�2
, �14�

where m= �N−2L0� /N0, l0=N0−N1+1. There is full analogy
between this problem and the problem already solved for the
single-peak function. The quadratic form for the single-peak
problem can be obtained from the quadratic form for the
current problem by performing the mapping b→b

�1−m+�1+m
�2 ,

c→c
�1+m+�1−m

�2 , R→R−a�1−m2. By repeating the steps that
lead to Eq. �9� we derive

R = max
m

− �a + b + c� + a�1 − m2

+ �f2�m� + bc��1 + m + �1 − m�2� . �15�

Theoretical results of Eqs. �12� and �15� for quadratic fitness
are presented in Fig. 1�b�.

B. General fitness landscape

For the ordered reference sequence we assume now non-
zero fitness at many N and L values, i.e., fitness is a function
of both genome length and the number of �+1� alleles:

r�N,L� = f� N

N0
,
2L − N

N0
� . �16�

We assume that fitness f�n ,m� is a smooth function of both
its arguments, i.e., it is also smooth in genome length. This is
in contrast to the model of Sec. II A where the fitness may
change drastically even within one unit of genome length. As
in the previous two examples, to find the mean fitness R it is
requested in our approach that distribution y�n ,m� must have
a maximum localized at N and L�N�. Then, if the maximum
exists the system of equations Eq. �1� for fractional popula-
tions can be partially decoupled at configuration �N ,L�N��.
This leads to the algebra problem of finding the largest ei-
genvalue of a matrix R=max�	�. In analogy with Eq. �14�,
the intermediary result is

	yl = yl��l,l0
f�n,m� − n�a + b + c� + a�n2 − m2�

+ �yl+1 + yl−1���n + m + �n − m�
�bc

2
. �17�

Finally, the mean fitness R is the largest eigenvalue 	 that is
obtained by solving Eq. �17�:

R = max
n�m

f�n,m� − n�a + b + c� + a�n2 − m2

+ ��n + m + �n − m��bc� . �18�

Note, the final result �18� requires finding the maximum in
two-dimensional space of arguments n and m.

III. RANDOM REFERENCE SEQUENCE

In this model a reference sequence contains both +1 and
−1 alleles that are randomly distributed along the entire ge-
nome length. Now the evolution model is described via PNj,
where N is the genome length and index j specifies the con-
crete sequence of length N, 1� j�2N. In the steady state we
have an eigenvalue equation for the mean fitness

MNj,N�j�PN�j� − RPNj , �19�

where N1�N�N2, 1� j�2N and

MNj,N�j� = rNj�N,N�� j,j� + ANj,Nj��N,N� + BNj,N�j + CNj,N�j�.

�20�

In the last equation matrix Â describes the base substitutions,

B̂-describes the insertions, and Ĉ-describes the deletions. We

have for the diagonal part D̂ of the matrix M̂

DNj,N�j� = �rNj − �a + b + c�
N

N0
��Nj,N�j�. �21�

In the case of a single peak fitness landscape we have a
fitness rN0j0

=J for the reference sequence N0j0 and 0 fitness
for other sequences. We calculate the mean fitness R from

the condition detM̂ −RÎ�=0, Î is the identity matrix, or

Tr ln�M̂ − RÎ� → − � . �22�

We rewrite the last equation as

Tr ln�D̂ − zÎ�� Î −
Î

D̂ − zÎ
�Â� + B̂� + Ĉ���→ − � , �23�

where Â , B̂ , Ĉ are nondiagonal parts of corresponding opera-

tors. We can calculate Eq. �23� expanding via Î

D̂−zÎ
. Thus we

have terms 	�Nj0�B̂�Ĉ�Nj0�. In the case of an ordered refer-
ence sequence,

�N0j0�B̂�Ĉ��N0j0� 	 1. �24�

For the random reference sequence,

�N0j0�B̂�Ĉ��N0j0� 	
1

N0
. �25�

For the random reference sequence we can neglect the non-

diagonal parts of operators B̂ , Ĉ and Eq. �22� is equivalent to
a similar equation in the single peak fitness case without
indels and with substitution R→R− �b+c�. Thus the mean
fitness of the random reference sequence is exactly the same
as though there were only base substitutions with the rate
a+b+c:
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R = J − �a + b + c� , �26�

and the error threshold condition is

J � �a + b + c� . �27�

For the continuous-time eigenmodel, where r1=A and
ri=1, i�1, the presence of indels modifies error threshold to

QA � 1, �28�

where Q is the probability of errorless reproduction of the
entire genome.

Consider the general symmetric fitness landscape. In the
previous sections we defined the fitness via the Hamming
distance from the reference sequence. Now for any genome
length N we specify some reference sequence and the fitness
of sequence with the genome length N is defined via Ham-
ming distance d from the corresponding reference sequence
with the length N:

r�N,d� = f� N

N0
,
N − 2d

N0
� , �29�

where f�¯ , ¯ � is assumed to be a smooth function of two
parameters. By the method outlined in Sec. II we obtain the
following general result for the mean fitness:

R = max
n�m

f�n,m� − n�a + b + c� + a�n2 − m2� . �30�

IV. DISCUSSION

The toy model with ordered reference sequence and
single-peak fitness, studied in Sec. II, is an interesting case
from a methodological point of view. It describes the evolu-
tion when the fitness is defined by genome length N and the
number L of �+1�-alleles. Genotype frequencies for this class
are smooth functions of L in the neighborhood of the peak
distribution. Error-threshold condition �11� depends on all
the rates in a nonlinear fashion because of the existence of
reversal processes introduced by indels, which processes
may drive the evolution towards the reference sequence. This
picture is unlike to what we learn from Crow-Kimura �par-
allel� model without indels, where error threshold depends
linearly on the rates. In the generalized model with single-
peak fitness, studied in Sec. III, where the reference sequence
is a random sequence of +1 and −1 alleles, the error-
threshold formula �27�, simplifies again to that for the Crow-
Kimura model with an efficient base substitution rate.

A general symmetric-fitness model with a random refer-
ence sequence, analyzed in Sec. III, presents the most real-

istic situation where both genome length and reference se-
quence are allowed to vary. In this work we investigated only
steady-state characteristics of this model.

In our computational approach we used standard methods
of linear algebra to partially decouple a system of evolution-
ary equations around the peak distribution and find the mean
fitness as the largest eigenvalue of the decoupled subsystem.
As the excellent agreement between our analytical and nu-
merical solutions demonstrates �see Fig. 1� our methodology
has the promise of becoming a routine approach in solving
general evolutionary problems with varying genome length,
alongside the methods of quantum mechanics �5� for the
fixed genome length, and the methods of quantum field
theory �17,18� for the changing genome length.

Haploid models with indels that were studied in this work
can be extended to diploid evolution models with parallel
insertions and deletions. Similar complex models were al-
ready considered to study the evolution of gene families via
conversion processes �11� and gene crossover processes �10�.
The latter mentioned mechanisms could be, in principle,
handled analytically by modern methods �19� that proved to
be successful in treating diploid evolution �20,21�.

In evolution research the models often ignore either selec-
tion processes �11–13� or indels �2–7�, however, it is gener-
ally accepted that the concurrent selection and indels play an
important role in biology. The models that are capable to
describe these two processes as acting simultaneously could
give a connection with the phylogeny analysis and with the
investigation of gene families. Our introductory study of this
work shows that it is possible to analytically derive some
class of results when selection is accompanied by indels.

In summary, in this work we introduced a method that
allows one to investigate a broad class of evolution models.
We solved a parallel mutation-selection model with general
symmetric-fitness landscapes in the case of simultaneously
acting base substitutions, insertions, and deletions. Our find-
ings indicate that in the steady state of this evolution model
the mean fitness depends strongly on the choice of the refer-
ence sequence.
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